Proteomic Analysis of *Cellvibrio japonicus* UEDA 107 using Gas Phase Fractionation and 2D Gel Electrophoresis

Andrew J Porter¹, Paddy Lavery², Lynn G Dover¹, Meng Zhang¹, and Gary W Black¹
¹School of Life Sciences | Northumbria University | Newcastle upon Tyne | NE1 8ST
²Nonlinear Dynamics | Keel House | Newcastle upon Tyne | NE1 2JE | UK
Email: andrew.porter@northumbria.ac.uk

Introduction

Plants and crops contain a large proportion of lignocellulose. Lignocellulosic biomass represents a huge and relatively untapped source of organic carbon (1). Current processing methods for this crystalline substrate involve extreme conditions for hydrolysis; however the use of carbohydrate degrading enzymes could increase the viability and reduce the cost of the process. There are a plethora of bacteria that have evolved a catalogue of carbohydrate degrading enzymes in order to survive in and around complex carbohydrate carbon sources. The analysis of the enzymes associated with carbohydrate degradation and metabolism are of significance to food, textile and biofuel industries. The target bacterium for this research is *Cellvibrio japonicus* UEDA 107, which encodes for more than 130 enzymes associated with carbohydrate degradation (2,3). The analysis of the proteome of *C. japonicus* when it is grown on a variety of complex carbon sources facilitates the quantification of protein expression. Two proteomics methods of LC-MS Gas Phase Fractionation (GPF) (4,5) and 2-D Gel Electrophoresis (2DE) have been employed in order to validate results.

Methods

- **Cell Growth.** *Cellvibrio japonicus* grown on liquid M9 minimal media supplemented with 0.5% (w/v) glucose or xylan until OD_{600nm} 0.8 (mid log).
- **GPF.** Dionex Ultimate 3000 coupled with Bruker HCT Ultra. 180 min gradient 0-40% Buffer B (95% ACN, 5% H₂O, 0.1% FA) 0.3 µl/min. Separations carried out using Dionex 50 cm, C18 column, 3 µm particle size at 45°C. MS1 was collected and 3 replicates analysed in Progenesis LC-MS to deduce mass ranges for 6 bins containing equal number of features (Figure 1). Then MS2 was collected for each bin and 3 replicates analysed in Progenesis LC-MS.

Results

GPF. Pilot data has shown 6414 features after alignment from all 6 bins (Figure 1). The number of protein IDs has risen by more than 300 proteins compared to MS without GPF, an increase of ~25% in proteome coverage. An increase due to the selection of more precursors. The carbohydrate degrading proteins identified from LC-MS database searches with the best MASCOT score were 1-4 glucosidase and xylanase enzymes.

2DE. Glucose was compared to xylan as sole carbon source for growth. 6 replicates of each have been analysed. There was shown to be 533 features in glucose media and 367 in xylan media post filtering (Figure 2). A total of 49 spots were highlighted as differentially expressed when two sets of six replicates were compared.

Comparing 2DE and GPF. The top 24 MASCOT scores of GPF and 24 most abundant spots in 2DE were compared (Table 1). There were 7 common ID between the two techniques, even though approaches are orthogonal.

![Figure 1: a) Ion intensity map of features from tryptic digestion of *C. japonicus* grown on glucose. b) Using Progenesis LC-MS to find the m/z ranges for each of the 6 bins in the GPF experiment. 6414 features were detected thus 1069 were placed into each bin.](image1.png)

![Figure 2: 2DE gels from *C. japonicus* grown on (a) glucose and (b) xylan](image2.png)

Table 1: Comparison of the identities of Top 24 most abundant spots and LC-MS features when *C. japonicus* was grown on xylan. Only features that were common are shown. 7/24 were commonly identified by the two techniques.

Discussion

The utilisation of different carbon sources in minimal media has demonstrated how *C. japonicus* is able to adapt to different environments by changes in protein expression. The use of 2DE and GPF in parallel has provided an interesting platform from which to analyse changes to the *C. japonicus* proteome. The differences in methodology provided insights into varying aspects of the proteome and displayed some concordance between the methods. Further work is required to identify those protein spots that have been shown to be differentially expressed shown using 2DE. In addition, further replicates, using GPF, are needed to highlight quantifiable changes to the proteome.

References